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LETTER TO THE EDITOR 

Fake Airy functions and the asymptotics of reflectionlessness 

M V Berry and C J Howls 
H H Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 lTL, U K  

Received 17 November 1989 

Abstract. Two classes of analytic refractive-index profile P ’(z, E ) ,  whose reflection 
coefficients r are zero for all values of a parameter E, are studied as E + 0. The aim is to 
understand why r = O  rather than r E e x p ( - l / F )  as for generic profiles. We find that 
reflectionlessness is a consequence of the fact that transition points of P 2  (zeros or poles 
in the complex z plane) form tight clusters (whose size vanishes with E )  which can be 
regarded neither as coalesced nor well separated. Expansion near a cluster yields the local 
wave not as the usual Airy function, whose Stokes phenomenon generates reflection, but 
as Bessel functions of half-integer order (fake Airy functions) which are exactly 
trigonometric functions with no Stokes phenomenon and so no reflection. 

Wave reflections, described by the one-dimensional Helmholtz equation 

d*$(z) + f ( z ,  1 E ) $ ( Z ) = O  

dz2 

with the refractive index profile P positive real on the real z axis and analytic in a 
strip including the real axis, are exponentially weak in the short-wave limit E + 0. The 
reflections arise from transition points (zeros or poles of P’)  in the complex z plane, 
and can be calculated using the phase-integral method (Heading 1962, Froman and 
Froman 1965, Berry and Mount 1972). In the analogous problem where z represents 
time and $ the coordinate of a classical harmonic oscillator whose frequency P is 
altered, E + O  is the limit of slow change, and the analogue of exponentially weak 
reflection is exponentially small change in the adiabatic ‘invariant’. 

It is, however, easy to construct profiles for which the reflection is identically zero 
for all E. In the oscillator analogue, the invariant is exactly conserved and in the 
quantum generalisation the states are the same in the infinite past and future. A natural 
question, which we answer here, is: how does reflectionlessness show itself in the 
small-s asymptotics? 

A large class of reflectionless profiles can be constructed (see e.g. Berry 1987) 
simply by defining the solution as a wave propagating purely in one direction. Thus 

$( z) = Pi”’( z) exp - dz‘ Po(z’) (2) (1 loz I 
where the wavenumber Po is positive real on the real axis and analytic near it. This 
satisfies (1) with profile 

d2 
dz 

P’( z, E )  = Pi (  z )  - &’PA/‘( z) 7 P i ’ / ’ (  z). (3 )  

L243 0305-4470/90/060243 +04$03.50 @ 1990 IOP Publishing Ltd 



L244 Letter to the Editor 

It is tempting but wrong to argue that when E is small P can be approximated by 
Po and the short-wave reflection amplitude r then obtained by the phase-integral 
method. This would give the result that although r vanishes to all orders in E it has 
a non-zero value determined by the transition point z* closest to the real axis in the 
upper half-plane. Let z* be an Mth-order zero of P: ( M  < 0 corresponds to a pole). 
Then phase-integral analysis (e.g. Froman and Froman 1965) gives an asymptotic 
solution where in addition to ( 2 )  there is a reflected wave with amplitude 

r = -2i c o s { k }  exp{ -E 2 Im Pdz)  dz}. (4) 

One way to obtain this result is to make a local expansion of the wave equation near 
z* (with Po replacing P). This would give 

d2+ A ( z - z * ) ~  -+ * = 0  
dz2 E 2  

whose solutions are the Bessel functions (Abramowitz and Stegun 1964) 

Continuation formulae between Re( z - z* )  > 0 and Re( z - z*) < 0 then lead directly 
to (4). 

In this wrong argument, the reflection has been generated by the Stokes phenomenon 
(Stokes 1864, Dingle 1973): in the asymptotics of these Bessel functions, small exponen- 
tials are born across ‘Stokes lines’ emanating from z*. For the most familiar case 
M = 1, the appropriate combination of J*l/3 is the rainbow integral of Airy (1838). 

Of course, the foregoing analysis has to be wrong, because the profile (3) generates 
the exact solution ( 2 )  which has no reflected wave. The error lies in replacing P by 
Po, because the difference, although containing the small coefficient E * ,  is singular at 
the transition point z* of Po and so cannot be neglected there. Local expansion near 
z* gives 

* M - E 2 M M ( M + 4 )  P’(z, E ) ~ A ( z - z  ) 
1 6 ( ~ - ~ * ) ~  * 

(7) 

Thus we see that in P2 the effect of the ‘perturbation’ is to split the isolated Mth-order 
zero of Pi  into a double pole at z* surrounded at a distance of order E ” ( ~ + ’ )  by M + 2  
equally spaced simple zeros. Although the size of this cluster vanishes with E ,  it is 
wrong, as we have seen, to treat it as a single collapsed transition point of order M. 
Nor is it correct to treat each transition point in the cluster as if it were well separated 
from all the others, because that would be justified only if the integral of P I E  between 
any two zeros is large, whereas in fact this quantity is of order unity (the integral 
between a zero and the double pole diverges). 

The cluster of M + 2 transition points must therefore be treated as a whole. This 
can be achieved by solving (1) exactly with P z  replaced by its local approximation 
(7). The solution is 

This differs from the wrong solution (6) only in that these Bessel functions have order 
1/2 instead of 1/(M + 2 ) .  But this is a crucial difference, because are given exactly 



Letter to the Editor L245 

by trigonometric functions: their asymptotic expansions terminate at the first term and 
are valid in all angular sectors around z*.  In other words, there is no Stokes 
phenomenon for these functions. 

For the simplest case M = 1,  we have 

( 9 )  

where y is a constant. This is the ‘fake Airy function’, whose exact form is what would 
be obtained as the leading term of the asymptotic expansion of the true Airy function 
if the Stokes phenomenon were neglected. It is the miracle of reflectionlessness to 
replace true Airy functions by fake ones. 

In asymptotics it is more common to be presented with equation ( 1 )  with P given, 
and seek a solution of the form ( 2 ) .  Again this leads to ( 3 )  but with Po, rather than 
P, as the unknown. The phase-integral method gives a formal solution of ( 3 )  for P,, 
as a series in powers of E ~ .  Usually this series diverges because in the true solution 
the incident wave (2)  generates a reflection, which could not be captured in a convergent 
power series. Here, however, the series terminates at its first term, because the first E’ 

phase-integral correction is cancelled by the E’ term already in the lowest-order 
term P’. 

A different class of reflectionless profile occurs in soliton theory (Dodd et al 1982).  
These have P 2  in (1) given by 

P2(z, E )  = 1 + m(m+ 1 ) ~ ’  sech’ z. (10) 

Exact solutions are 

dz 

Here, as with the previous class ( 3 )  of profiles, reflectionlessness can be understood 
in the small-s limit by analysing the appropriate cluster of transition points. In this 
case we have to expand P 2  near i ~ / 2 :  

m ( m  + I )& ’  
( z - i ~ / 2 ) *  

P2(z, E )  = 1 - 

so the cluster is a double pole flanked by two simple zeros with separation 2 d m (  m + 1 ) .  
As before, these transition points may be regarded neither as coincident nor well 

separated, and must be treated as a group. The exact solution of ( 1 )  with local 
approximate profile ( 1 2 )  is 

+(z)  (z-i.rr/2)”’J*,m+,,,,[(z-i.rr/2)/~1. ( 1 3 )  
Because the order is half-integer, these are again expressible exactly in terms of 
trigonometric functions, with no Stokes phenomenon and so no reflection. 

Our asymptotic analysis provides another way to see what is special about these 
reflectionless profiles. In quantum mechanical terminology, not only must the potential 
have a special form but the values of energy, Planck’s constant and the potential 
parameters must be tuned so as to manoeuvre the transition points into tight clusters 
with precisely specified internal structure. Only then are the local wavefunctions fake 
Airy functions (e.g. (8), ( 9 )  or (13)) rather than real ones. 

We are pleased to thank Professor A Bhattacharjee for a generous and enlightening 
correspondence. CJH thanks SERC for a research studentship. 
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